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Abstract
We review witnesses, an emerging Haskell idiom, and suggest some
terminology. We then introduce open witnesses as a library, and
propose an extension to allow the creation of them at top-level. We
show how this solves the expression problem, all with relatively
little implementation fuss.
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1. Introduction
Users of object-oriented languages such as Java and C++ will be
familiar with extensible types under the name subclassing, the
ability to create a type (a derived class) that extends and existing
type (a base class). The derived class inherits all the data of the
base class, and can extend it with additional data of any type. Values
of the derived class can be (implicitly) converted to the base class
without loss of this additional data: such values of the base class
can be examined and recovered as the derived class.

The Haskell equivalent of this is adding new variants to an
existing data-type, but despite Haskell’s sophisticated type system,
this is quite hard to do in the general case. It’s straightforward to
do if one restricts the type of the additional data to be stored and
recovered, at the time “base type” is declared.

A number of solutions have been suggested for this prob-
lem (see section 5), most notably the Data.Typeable [1] (and
Data.Dynamic) modules available in the Haskell standard li-
braries. But this is unsafe (see section 4.2). The key to the problem
is dynamically representing, or witnessing, the type to be stored, so
that it can be matched up and recovered.

There is already existing work on witnesses. Witnesses (sec-
tion 2) are values that say something about type-variables. The
type of the witness defines exactly what can be said about the type
variables. We’re particularly interested in simple witnesses (section
2.1), witnesses that constrain a type-variable to a single type. Sim-
ple witnesses can be compared by value, and if the values match,
we can return a proof of type identity, itself an equality witness.

matchWitness ::
Witness a → Witness b → Maybe (EqualType a b)

[Copyright notice will appear here once ’preprint’ option is removed.]

Simple witness types for closed systems of types can be defined
with GADTs (section 2.2), though it is possible to do so without
GADTs (section 2.5). And if we have a witness type for its ele-
ments, we can create a witness type for HList-style lists (section
2.7). We can also create witness types that reify class instances
(section 2.4), so we can pass them around as values.

Our contribution is open witnesses (section 3), simple witnesses
that can witness to any type, but can only be generated in the IO
monad (and another OW monad we define for that purpose).

newIOWitness :: IO (IOWitness a)

With open witnesses one can create open dictionaries that are fully
heterogenous: the same dictionary can store values of any type,
with matching open witnesses as keys (section 3.2). For instance,
one can implement the ST monad as a state monad on OW with
an open dictionary as its state (section 3.3).

So far, so good; but we’re limited in the ways open witnesses
can be created. But if we extend Haskell to allow open witnesses to
be declared at top level, with each one unique (section 4), we can
do a lot more.

〈identifier〉 :: IOWitness 〈type〉 ← newIOWitness

The combination of fully heterogenous dictionaries and the top-
level declaration of unique strongly-typed keys to those dictionaries
gives us many useful things:

• a safe version of Typeable (section 4.2)
• extensible data types (section 4.3) and thus a solution to the

expression problem (section 4.4)
• idioms for object oriented programming (sections 4.5, 4.6)
• bindings dictionaries for an extension for thread-local storage

(section 4.7)

The purpose of this paper is twofold: to convince Haskell program-
mers that they want to use open witness declarations, and, relatedly,
to convince implementers of Haskell that they want to implement
them.

2. Witnesses
A witness is a value that witnesses some sort of constraint on
some list of type variables. The type of such a value might look
something like this:

MyWitness a b c

The constraint on a , b and c might be anything, depending on
the value. Perhaps there’s a class constraint. Perhaps one of them
is restricted to a particular set of types. However, we’re mostly
interested in these three categories:

• simple witnesses constrain a variable to a single type
• equality witnesses constrain two type variables to be the same

type
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• instance witnesses constrain type variables to an instance of a
type-class.

Type witnesses are not a new idea, but were one of the first uses of
GADTs in Haskell. They are used in at least one major Haskell
project, darcs [12]. RepLib [17] introduces representation types
which are both simple witnesses and what we call representatives
(section 2.6), but here we separate the two notions. This section of
the paper is largely a review of existing work.

2.1 Simple Witnesses and Equality Witnesses
Simple witnesses constrain a variable to a single type, and they have
a type of this form:

MySimpleWitness a

Here a is the type variable being constrained. Though a might be
of any kind, throughout we shall examine only simple witnesses to
types of kind ∗.

Sheard et al. [14] show how to match two simple witnesses, to
provide (if they are equal) a proof of type equality. The principle is
this: to count as a simple witness type, each value must constrain
the a parameter to a single type. Accordingly, if two values are
identical, then they have the same type (though the converse is not
always true, as we shall see). This means that given two simple
witnesses of types w a and w b, we can compare them to determine
whether a and b are the same type. If they are the same type, we
can provide a value of type EqualType a b (an equality witness)
that proves the equality of a and b.

This class provides a function matchWitness that accom-
plishes this:

class SimpleWitness w where
matchWitness ::

w a → w b → Maybe (EqualType a b)

The class comes with a constraint. To be a correct instance of
SimpleWitness , all values must match themselves:

matchWitness wit wit = Just MkEqualType

Thus with the appropriate implementation, MySimpleWitness
would be an instance.

instance SimpleWitness MySimpleWitness where
...

EqualType (Equal in Sheard et al. [14]) is another kind of witness
type, one that witnesses to the equality of its two type arguments.
It can be defined straightforwardly with GADTs:

data EqualType a b where
MkEqualType :: ∀ t . EqualType t t

Simply by bringing a MkEqualType into scope, its type parameters
a and b can be unified in any type expression. For instance:

exampleUnify ::
∀ a b c. EqualType a b → (a, b → c) → (b, a → c)

exampleUnify MkEqualType = id

One cannot construct a MkEqualType of type EqualType a b
where a and b are different types. One can of course construct
undefined of type EqualType a b for any a and b, but since
undefined will not match against MkEqualType , it cannot be used
to unify a and b.

Note that the type arguments to EqualType have kind ∗. We
could create a similar type for representing proofs of equality of
type-constructors of any other kind. In practice, we will shoehorn
these into EqualType where possible. For instance, a proof that f
and f ′, two type-constructors of kind ∗ → ∗, are identical, can be
represented with a value of type EqualType (f ()) (f ′ ()).

Simple witnesses constrain their parameter to a single type,
rather than just to an open type expression. For instance, using
GADTs, one can create a type that includes values that witness only
to part of a type:

data MyPartialWitness a where
MPWMaybe :: ∀ p.MyPartialWitness (Maybe p)

Here MPWMaybe witnesses the parameter a to Maybe p, but p
is left unwitnessed. MyPartialWitness cannot be made a correct
instance of SimpleWitness and is not a simple witness type.

2.2 Witnesses with GADTs
Just as we did for our equality witness type, the easiest way to
create witness types of all sorts is with generalized algebraic data
types (GADTs) [11]. Here’s an example of a simple witness type,
where the possible types to be witnessed are represented with
values:

data CharOrInt a where
IsChar ::CharOrInt Char
IsInt ::CharOrInt Int

This gives us two witnesses, IsChar and IsInt . They have type
CharOrInt Char and CharOrInt Int , but as constructors both
pattern-match as CharOrInt a , unifying a to Char or Int in their
consequent expression. For instance:

somechar :: ∀ a. CharOrInt a → a
somechar = λ IsChar → ’t’

The type of the parameter to CharOrInt can be universally quan-
tified (∀ a.) in the type of somechar , but IsChar has the effect of
binding that parameter to Char in the consequent of the expression,
’t’.

Since each value of CharOrInt constrains the type parameter
a to a single type, we can make it an instance of SimpleWitness:

instance SimpleWitness CharOrInt where
matchWitness IsChar IsChar =Just MkEqualType
matchWitness IsInt IsInt =Just MkEqualType
matchWitness =Nothing

Our example CharOrInt covers only two types. However, we can
create witness types that witness to a system of types:

data MyType a where
IsChar ::MyType Char
IsInt ::MyType Int
IsMaybe ::∀ a.MyType a → MyType (Maybe a)
IsList ::∀ a.MyType a → MyType [a]
IsPair ::
∀ a b.MyType a → MyType b → MyType (a, b)

This covers all types creatable from Char and Int and the type
constructors [], Maybe and (, ). For instance, a witness to the type
[Maybe ([Int ],Char)]:

exampleMyType :: MyType [Maybe ([Int ],Char)]
exampleMyType =

IsList $ IsMaybe $ IsPair (IsList IsInt) IsChar

We can write matchWitness for MyType to make it an instance
of SimpleWitness:

instance SimpleWitness MyType where
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matchWitness IsChar IsChar =
Just MkEqualType

matchWitness IsInt IsInt =
Just MkEqualType

matchWitness (IsMaybe tp) (IsMaybe tq) = do
MkEqualType ← matchWitness tp tq
return MkEqualType

matchWitness (IsList tp) (IsList tq) = do
MkEqualType ← matchWitness tp tq
return MkEqualType

matchWitness (IsPair tpa tpb) (IsList tqa tqb) = do
MkEqualType ← matchWitness tpa tqa
MkEqualType ← matchWitness tpb tqb
return MkEqualType

matchWitness = Nothing

2.3 Using Witnesses
The simplest use of witnesses is to witness the type of a value. We
provide the type Any to make this easy:

data Any w = ∀ a.MkAny (w a) a

Thus the type Any CharOrInt contains either a Char or an Int :
it is isomorphic to Either Char Int .

Any CharOrInt ∼= Either Char Int

But witness types are more general than this: they can witness a
type-variable in any expression. We can generalise Any to take a
type-constructor:

data AnyF w f = ∀ a.MkAnyF (w a) (f a)

Thus we have this isomorphism:

AnyF CharOrInt [] ∼= Either [Char ] [Int ]

Notice how the Char vs. Int choice of type is separated from its
use as the element type to the [] constructor. This separation is the
key purpose of witness types.

2.4 Instance Witnesses
Yakeley [18] introduces instance witnesses, that reify an instance
of a class. For example, we can define a NumInst type that reifies
instances of the Num class:

data NumInst a where
MkNumInst :: ∀ a.Num a ⇒ NumInst a

Any value with a type with a Num constraint can be rewritten to
take a NumInst argument instead. Here are (+) and fromInteger
as defined in the Prelude:

(+) :: ∀ a.Num a ⇒ a → a → a
fromInteger :: ∀ a.Num a ⇒ Integer → a

And here they are rewritten:

plus ′ :: ∀ a.NumInst a → a → a → a
— Look, no Num constraint!

plus ′ MkNumInst = (+)
fromInteger ′ :: ∀ a.NumInst a → Integer → a
fromInteger ′ MkNumInst = fromInteger

And we can create NumInst values for any instance of Num:

intNum :: NumInst Int
intNum = MkNumInst

2.5 Witnesses without GADTs
Baars and Swierstra [4] introduced an equality type in 2000, before
GADTs were well-known:

newtype Equal a b = Equal (∀ f . f a → f b)

By “plugging in” the appropriate type constructor as f , they showed
how to use it to convert type-variables in any expression. Indeed
their Equal is isomorphic to EqualType:

toEqual :: EqualType a b → Equal a b
toEqual MkEqualType = Equal id
fromEqual :: Equal a b → EqualType a b
fromEqual (Equal p) = p MkEqualType

Sulzmann and Wang [15] show how to convert GADTs into GADT-
less types by a similar approach of including the general conversion
function, which we can use to create witness types without GADTs:

data CharOrInt ′ a
=IsChar(∀ f . f a → f Char)
| IsInt (∀ f . f a → f Int)

2.6 Representatives
If two simple witnesses have the same value, then they have the
same type. Now we introduce representatives: type constructors for
which if they have the same type, then they have the same value.

simple witness representative
value → type type → value

The main benefit of representatives is that we can make them
instances of a class, so as to avoid passing them around explicitly.

class Is rep a where
representative :: rep a

Simple witnesses defined with GADTs are often also representa-
tives. The CharOrInt type we defined in section 2.2, for instance,
is a representative type:

instance Is CharOrInt Char where
representative = IsChar

instance Is CharOrInt Int where
representative = IsInt

The simplest representative is the universal representative, Type .

data Type a = MkType

Type is useful as a parameter to polymorphic functions when one
wants to make clear that just the type is being passed to specify
some class instance dictionary, and not any value.

class Storable a where
sizeOf :: Type a → Int

The definition is met trivially, since there is only one value in Type .

instance Is Type a where
representative = MkType

2.7 HList-Style List Types
HList [6] provides strongly-typed heterogenous lists using two
constructors called HCons and HNil . Given a witness type for
the elements, we can create a witness type for an HList of those
elements.

data ListType w a where
IsHNil :: ListType w HNil
IsHCons ::

w e → ListType w l → ListType w (HCons e l)

instance SimpleWitness w ⇒
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SimpleWitness (ListType w)
where

matchWitness IsHNil IsHNil = Just MkEqualType
matchWitness

(IsHCons we1 wl1) (IsHCons we2 wl2)
= do

MkEqualType ← matchWitness we1 we2
MkEqualType ← matchWitness wl1 wl2
return MkEqualType

The type may also have representatives:

instance Is (ListType w) HNil where
representative = IsHNil

instance (Is w e, Is (ListType w) l) ⇒
Is (ListType w) (HCons e l)

where
representative =

HCons representative representative

As an example, we can use CharOrInt from section 2.2 to create
a witness for lists of Char and Int values.

charsInts :: Any (ListType CharOrInt)
charsInts =

MkAny representative (HCons 3 (HCons HNil ’a’))

The type Any (ListType CharOrInt) contains HList values
where each element is either a Char or an Int .

3. Open Witnesses
As we have shown, using GADTs it is straightforward to create
a simple witness type for any given finite set of types and type-
constructors. We now introduce a type for a variety of simple wit-
nesses we call open witnesses, that can witness any type. However,
they cannot be constructed: they can only be generated in certain
monads.

We present an interface for open witnesses in the IO monad
here as the public interface to a library extension: while it is safe to
use, it requires unsafe functions to implement.

type IOWitness a
instance SimpleWitness IOWitness
newIOWitness :: ∀ a. IO (IOWitness a)

Unlike the examples of type witnesses we constructed earlier with
GADTs, IOWitness does not encode the witnessed type. Instead,
each has a generated unique value, and the matchWitness func-
tion matches them by this value. So while two IOWitness values
from separate calls to newIOWitness may have the same type,
matchWitness on them will return Nothing .

However, if two IOWitness arguments have the same value,
then they must be the result of a single call to newIOWitness .
They must therefore have the same type, and thus it is safe for
matchWitness to create a MkEqualType for them.

We also introduce a “runnable” OW monad in which open wit-
nesses (OpenWitness) can be generated and used. For simplicity,
we generalise IOWitness as OpenWitness RealWorld .

data OpenWitness s a
instance SimpleWitness (OpenWitness s)
data RealWorld
type IOWitness = OpenWitness RealWorld
newIOWitness :: ∀ a. IO (IOWitness a)

data OW s a
newOpenWitnessOW :: ∀ s a.OW s (OpenWitness s a)
runOW :: ∀ a. (∀ s.OW s a) → a
owToIO :: ∀ a.OW RealWorld a → IO a

The OW monad follows a scheme similar to the ST monad of
using a type parameter (s) to prevent OpenWitness values (or
STRef values in ST ) unsafely escaping.

3.1 Implementation
We believe this open witness API cannot be implemented in safe
Haskell. However, we can implement it in GHC using various
unsafe extensions.

The OpenWitness type and the newIOWitness function
can be implemented similarly to the Data.Unique module.[2]
OpenWitness is a newtype of Integer :

newtype OpenWitness s a = MkOpenWitness Integer
deriving Eq

We use unsafePerformIO and the NOINLINE pragma to de-
clare ioWitnessSource as an MVar at top level. By using Integer
rather than Int , we prevent newIOWitness from rolling over and
unsafely issuing duplicate values.

ioWitnessSource :: MVar Integer
{−# NOINLINE ioWitnessSource #−}
ioWitnessSource = unsafePerformIO (newMVar 0)

An IOWitness is an OpenWitness specialised for RealWorld ,
very similar to the ST monad:

data RealWorld
type IOWitness = OpenWitness RealWorld

Our generation function newIOWitness uses ioWitnessSource
to count out unique values.

newIOWitness :: ∀ a. IO (IOWitness a)
newIOWitness = do

val ← takeMVar ioWitnessSource
putMVar ioWitnessSource (val + 1)
return (MkOpenWitness val)

For matchWitness , we compare the Integer values and re-
turn a MkEqualType if they are equal. We have to create the
MkEqualType with unsafeCoerce .

instance SimpleWitness (OpenWitness s) where
matchWitness

(MkOpenWitness ua)
(MkOpenWitness ub)

= if ua == ub
then Just (unsafeCoerce MkEqualType)
else Nothing

The OW monad is a pure state monad with an Integer state.

newtype OW s a = MkOW (State Integer a)
deriving (Functor ,Monad ,MonadFix )

The newOpenWitnessOW function creates new OpenWitness
values with the current state, and then increments the state.

newOpenWitnessOW :: ∀ s a.OW s (OpenWitness s a)
newOpenWitnessOW = MkOW

(State (λ val → (MkOpenWitness val , val + 1)))

To run computations of the OW monad, we simply run the state
monad with the initial state of 0. This means that the OpenWitness
values will be unique only within the run that created them. This
is not a problem, as the s type parameter ensures that witnesses
cannot escape runOW .

runOW :: ∀ a. (∀ s.OW s a) → a
runOW uw = (λ (MkOW st) → evalState st 0) uw

We define owToIO to run computations of type OW RealWorld a
in the IO monad, and the generated witnesses are thus of type
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IOWitness . The OW computation modifies the state of our top-
level MVar , ioWitnessSource .

owToIO :: OW RealWorld a → IO a
owToIO (MkOW st) =

modifyMVar ioWitnessSource (λ start →
let

(a, count) = runState st start
in
return (count , a)
)

3.2 Open Dictionaries
Using OpenWitness it is straightforward to create an open dictio-
nary type. An OpenDict can store values of any type in the same
dictionary, indexed by OpenWitness keys. While this can be gen-
eralised to any witness type, we present the API here specifically
for OpenWitness for simplicity.

data OpenDict s
openDictLookup ::

OpenWitness s a → OpenDict s → Maybe a
emptyOpenDict :: OpenDict s
openDictFromList ::

[Any (OpenWitness s)] → OpenDict s
openDictAdd ::

OpenWitness s a → a →
OpenDict s → OpenDict s

openDictModify ::
OpenWitness s a → (a → a) →
OpenDict s → OpenDict s

openDictReplace ::
OpenWitness s a → a →
OpenDict s → OpenDict s

type IOOpenDict = OpenDict RealWorld

We choose not to expose any ordering on OpenWitness , the type
of keys of our dictionary, something that will become important
in section 4. So the performance of look-up for an OpenDict can
be no better than O(n) as we compare a given key with each
key in the dictionary in turn. This could perhaps be improved by
exposing an ordering privately to the OpenDict implementation,
but for simplicity we show an implementation that uses only what
is exposed.

The type is simply a list of cells (key-value pairs), each of type
Any (OpenWitness s).

newtype OpenDict s =
MkOpenDict [Any (OpenWitness s)]

emptyOpenDict = MkOpenDict []
openDictFromList = MkOpenDict

To look up a key, we go through each pair in the dictionary until a
key matches.

matchAny :: (SimpleWitness w) ⇒
w a → Any w → Maybe a

matchAny wit (MkAny cwit ca) = do
MkEqualType ← matchWitness cwit wit
return ca

openDictLookup wit (MkOpenDict cells) =
listToMaybe (mapMaybe (matchAny wit) cells)

To add an entry, we simply attach it to the head with the Haskell :
list construction operator.

openDictAdd wit a (MkOpenDict cells) =
MkOpenDict ((MkAny wit a) : cells)

To modify an entry, we again go through each pair until a key
matches, and then modify it:

replaceFirst :: (a → Maybe a) → [a] → [a]
replaceFirst f (a : aa) = case f a of

Just newa → (newa : aa)
→ a : (replaceFirst f aa)

replaceFirst = []

openDictModify wit f (MkOpenDict cells) =
MkOpenDict

(replaceFirst
((fmap ((MkAny wit) . f )) . (matchAny wit))
cells

)

openDictReplace wit a =
openDictModify wit (const a)

3.3 OW and ST

Trading one library extension for another, it is possible to build the
ST monad together with STRef (except for, of course, the unsafe
functions) using the OW monad.

Our ST monad type is simply a state monad nesting OW , with
OpenDict as the state.

import Control .Monad .State
type ST s = StateT (OpenDict s) (OW s)

The basic monad-running functions are straightforward.

stToOW :: ST s a → OW s a
stToOW st = evalStateT st emptyWitnessDict
runST :: (∀ s . ST s a) → a
runST st = runOW (stToOW st)
fixST :: (a → ST s a) → ST s a
fixST = mfix
stToIO :: ST RealWorld a → IO a
stToIO = owToIO . stToOW

Our reference type, STRef , is simply our open witness type.

type STRef = OpenWitness

To create a new reference given an initial value, we generate it with
newOpenWitnessOW and store it with the value in the dictionary.

newSTRef :: a → ST s (STRef s a)
newSTRef a = do

wit ← lift newOpenWitnessOW
dict ← get
put (openDictAdd wit a dict)
return wit

To read or write a reference, we find it in the dictionary and perform
the appropriate action on the dictionary entry:

readSTRef :: STRef s a → ST s a
readSTRef key = do

dict ← get
case openDictLookup key dict of

Just a → return a
→ fail ”ref not found”

writeSTRef :: ∀ s a. STRef s a → a → ST s ()
writeSTRef key a =

modify (openDictReplace key a)

modifySTRef ::
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∀ s a. STRef s a → (a → a) → ST s ()
modifySTRef key f =

modify (openDictModify key f )

This is not the most efficient implementation. Since we have chosen
not to make OpenWitness an instance of Ord , we cannot use it as
a key to a Map. However, it would not be hard to generate such
keys (say, Int) in the monad and store them in our STRef types.

4. Open witness declarations
We now introduce a language extension that would allow the pro-
grammer to declare IOWitness values at top level.

〈identifier〉 :: IOWitness 〈type〉 ← newIOWitness

This extension might be generalised to allow other top level
things such as MVars, but for this paper we restrict ourselves to
newIOWitness . Simple witnesses declared in this way are guaran-
teed to be unique, that is to match themselves (with matchWitness)
but not match witnesses from any other declaration or from any ex-
plicit call to newIOWitness in the IO monad.

In the syntax of the Haskell 98 Report[9], we add a new case to
the topdecl production:

| pat :: type ← newIOWitness

The declared type must be equal to IOWitness t , where t is a
closed type, i.e., where all type-variables have been quantified.
Informally, foralls, be they explicit or implicit, are not allowed
outside the IOWitness .

w1 :: IOWitness Int ← newIOWitness
— OK

w2 :: IOWitness (∀ a. IO a) ← newIOWitness
— OK if impredicativity is allowed

w3 :: ∀ a. IOWitness (IO a) ← newIOWitness
— prohibited, IOa is not closed

w4 :: IOWitness (IO a) ← newIOWitness
— prohibited, this is the same as w3

While this could be generalised to allow certain other IO functions
at top-level (see section 6.2), in this paper we consider only the
newIOWitness function.

An extension that allows the running of IO code at top level
runs the risk of breaking various assumptions of Haskell. In par-
ticular, we want to prevent the observation of the order in which
initialisers are run. The newIOWitness function must have no
externally-observable side-effects. Furthermore, we cannot allow
an Ord instance or any ordering of IOWitness values.

4.1 Implementation
Open witness declarations, like other top-level initialisers, can be
written using unsafePerformIO , but care must be taken to ensure
that the initialiser (newIOWitness) is run only once. In GHC, we
can use the NOINLINE pragma. Thus

identifier :: type ← newIOWitness

becomes

identifier :: type
{−# NOINLINE identifier #−}
identifier = unsafePerformIO newIOWitness

However, we don’t need to actually run newIOWitness . We can
instead have the compiler create its own static witnesses. For in-
stance, we can hash unique names. For a given package P and
module M , the nth witness declaration

pat :: type ← newIOWitness

becomes

pat :: type = MkOpenWitness
(toInteger (hashString ”P : M”) + n)

A stronger hash function could also be used if necessary.

4.2 A Safe Typeable
The Typeable class in Data.Typeable is unsafe: it allows one to
create unsafeCoerce:

newtype Thing a = MkThing {unThing :: a}
instance Typeable (Thing a) where

typeOf = typeOf ()

unsafeCoerce :: a → b
unsafeCoerce a =

unThing $ fromJust $ cast $ MkThing $ a

This is unavoidable if Data.Typeable is to allow its users to create
instances of Typeable for their own types.

With open witness declarations, however, we can define a safe
Typeable class. But we only implement the representative func-
tionality of Data.Typeable: our approach avoids TyCon and in-
trospection into the internal structure of types.

A naive approach is to make our TypeRep type IOWitness ,
and so require a witness declaration for each instance:

class NaiveTypeable a where
naiverep :: IOWitness a

This however requires a new instance declaration for each and
every type that one wishes to use. For example, types such as Int ,
[Char ], [Maybe [Bool ]] and so forth would each require a separate
instance. What we would prefer is an instance declaration only
for each defined type and type constructor: declarations for [] and
Maybe as well as Int , Char and Bool . So instead we create a
TypeRep type:

data TypeRep t where
SimpleTypeRep ::IOWitness t → TypeRep t
ApplyTypeRep ::

TypeRep1 p → TypeRep a → TypeRep (p a)

And here is our Typeable class:

class Typeable a where
rep :: TypeRep a

Is TypeRep a representative as defined in section 2.6? Actually, no,
as we cannot guarantee that two values of the same type have the
same value. But it is a simple witness type:

instance SimpleWitness TypeRep where
matchWitness

(SimpleTypeRep wa) (SimpleTypeRep wb) =
matchWitness wa wb

matchWitness
(ApplyTypeRep tfa ta) (ApplyTypeRep tfb tb) = do

MkEqualType ← matchTypeRep1 tfa tfb
MkEqualType ← matchWitness ta tb
return MkEqualType

matchWitness = Nothing

We can use this fact to define the required cast and gcast :

cast :: ∀ a b. (Typeable a,Typeable b) ⇒
a → Maybe b

cast a = do
MkEqualType :: EqualType a b ←

matchWitness rep rep
return a
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gcast :: ∀ a b c. (Typeable a,Typeable b) ⇒
c a → Maybe (c b)

gcast ca = do
MkEqualType :: EqualType a b ←

matchWitness rep rep
return ca

We still have TypeRep1 to define, to witness types of kind ∗ → ∗.
Our scheme obliges us to choose a finite set of kinds, and define
a TypeRepX type for each one. For simplicity, we’ll pick the
set {∗, ∗ → ∗, ∗ → ∗ → ∗}. We do not include, for instance,
(∗ → ∗) → ∗, though this is the kind of our Any type.

data TypeRep1 (t :: ∗ → ∗) where
SimpleTypeRep1 ::

IOWitness (t ()) → TypeRep1 t
ApplyTypeRep1 ::

TypeRep2 p → TypeRep a → TypeRep1 (p a)
data TypeRep2 (t :: ∗ → ∗ → ∗) where

SimpleTypeRep2 ::
IOWitness (t () ()) → TypeRep2 t

We can now create some instances for our types, both of kind ∗, ...

witChar :: IOWitness Char ← newIOWitness
instance Typeable Char where

rep = SimpleTypeRep witChar
witInt :: IOWitness Int ← newIOWitness
instance Typeable Int where

rep = SimpleTypeRep witInt
— etc.

...and the higher kinds:

witList :: IOWitness [()] ← newIOWitness
instance Typeable a ⇒ Typeable [a] where

rep =
ApplyTypeRep

(SimpleTypeRep1 witList)
rep

witFn :: IOWitness (() → ()) ← newIOWitness
instance (Typeable a,Typeable b) ⇒

Typeable (a → b)
where

rep =
ApplyTypeRep

(ApplyTypeRep1
(SimpleTypeRep2 witFn)
rep

)
rep

— etc.

The Dynamic type is easy to define:

type Dynamic = Any TypeRep
toDyn :: Typeable a ⇒ a → Dynamic
toDyn a = MkAny representative a
fromDynamic ::

Typeable a ⇒ Dynamic → Maybe a
fromDynamic (MkAny wit a) = do

MkEqualType ← matchWitness wit representative
return a

fromDyn :: Typeable a ⇒ Dynamic → a → a
fromDyn dyn def =

fromMaybe def (fromDynamic dyn)

For dynApply , we need to examine the TypeRep in the first ar-
gument, and verify, firstly, that it represents a function type; and
secondly, that the type of its argument matches the TypeRep of the

second argument. The rest just falls into place thanks to the type-
checking magic of MkEqualType .

dynApply ::
Dynamic → Dynamic → Maybe Dynamic

dynApply
(MkAny (ApplyTypeRep

(ApplyTypeRep1 (SimpleTypeRep2 witFn ′) rx ′)
ry

) f )
(MkAny rx x )

= do
MkEqualType ← matchWitness witFn witFn ′

MkEqualType ← matchWitness rx rx ′

return (MkAny ry (f x ))
dynApply = Nothing

4.3 Extensible Data-Types
The expression problem concerns the ability to extend types by
adding new variants, and to create new functions on such types
which can then be extended with new equations for the new vari-
ants.

The first part of the expression problem is the ability to add
variants, and so first we must discuss what we mean by variants.
For Haskell, a variant is normally considered as a constructor in
a data-type. But our modest extension doesn’t allow anything so
fancy as to declare new constructors to existing data-types.

Instead, we consider virtual constructors. A virtual constructor
is a pair of functions that do the work of a constructor, more
specifically, of a single-argument constructor.

A constructor of a data-type D with a single argument of type
T does two things. One is to construct, by acting as a function
of type T → D : indeed this is the type of such a constructor
when considered as a function. The other is to match, that is, to
examine whether or not a given D has that constructor, and if so,
to obtain the contained T . This we can represent as a function of
type D → Maybe T . A virtual constructor, then, is simply a pair
of functions we call construct and match .

construct :: T → D
match :: D → Maybe T

We have two constraints on the functions.

• construction: a given T constructed as a D matches to the
same T :

match . construct = Just

• uniqueness: if a given D matches a given T , it will be con-
structed as the same D :

fmap construct (match d) = Just d 〈or〉Nothing

What we want is an extensible data-type: some type D we can
define in module M 1, and later, given any type T , define a virtual
constructor of D for T in module M 2.

We can do this with open witness declarations. Our D is just a
value with a type witnessed by IOWitness .

module M 1 where
type D = Any IOWitness

For M 2, we declare a witness witT for T , and use it to match
values inside the D .

module M 2 where
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import M 1
import 〈elsewhere〉(T )
witT :: IOWitness T ← newIOWitness
constructT :: T → D
constructT t = MkAny witT t
matchT :: D → Maybe T
matchT (MkAny wit x ) = do

MkEqualType ← matchWitness wit witT
return x

Let’s verify that the constraints are satisfied. Firstly, the construc-
tion constraint:

LHS = matchT . constructT
= λ t → matchT (constructT t)
= λ t → matchT (MkAny witT t)
= λ t → do

MkEqualType ← matchWitness witT witT
return t

= λ t → do
MkEqualType ← Just MkEqualType
return t

= λ t → return t = Just = RHS

And the uniqueness constraint:

d = MkAny wit x
LHS = fmap construct (match d)
= fmap constructT (matchT (MkAny wit x ))
= fmap constructT
(do

MkEqualType ← matchWitness wit witT
return x

)
= do

MkEqualType ← matchWitness wit witT
return (constructT x )

= do
MkEqualType ← matchWitness wit witT
return (MkAny witT x )

= Nothing 〈or (if wit = witT )〉 do
MkEqualType ← matchWitness wit wit
return (MkAny wit x )

= Nothing 〈or〉 Just d = RHS

4.4 The Expression Problem
We can consider the expression problem as a diamond-shaped
pattern of dependency.

1. define type D

2. given type T , extend D with variant on T :
constructT :: T → D
matchT :: D → Maybe T

3. given type R, declare function f of type D → R

4. given function fT :: T → R, define result of f . constructT
to be fT .

Here points 2 and 3 depend on point 1, and point 4 depends on
points 2 and 3, forming the diamond shape.

The unit of dependency in Haskell is the module, but Haskell
has a sensible rule that added modules cannot change the behaviour
of existing modules.[3] This means point 4 cannot be effective in a
separate module, it must be in the same module as either point 2 or
point 3. Let’s consider each case.

We can put point 4 with point 3, defining the result when we
declare the function, and define modules M 1, M 2, M 3, each
importing the previous modules:

• in M 1, define type D

• given T , in M 2 define variant (constructT ,matchT ) of D on
T

• given R and fT :: T → R, in M 3 define f :: D → R with
f . constructT = fT .

To solve this with our open witness declarations, with virtual con-
structors taking the role of variants, we use our the extensible data-
types solution in the previous section for points 1 and 2. For point
3, we define f by applying matchT to its D argument to determine
if it is the variant, and then give the appropriate result.

module M 3 where
import M 1
import M 2
import 〈elsewhere〉(R, fT )
f :: D → R
f d = case matchT d of

Just t → fT t
Nothing → undefined

Alternatively, we can put point 4 with point 2, defining the applica-
tion when we declare the variant. Again, each module imports the
previous modules:

• in MM 1, define type D

• given R, in MM 2 define f :: D → R

• given T and fT :: T → R, in MM 3 define
constructT :: T → D
matchT :: D → Maybe T
such that f . constructT = fT .

If MM 1 and MM 2 were joined into a single module, so that we
knew about the function f when defining our open type D , the
obvious approach would be to include f directly in D :

data D = MkD
{

variant :: Any IOWitness,
f :: R
}

Here the result of f on the D is stored in it directly. This approach
is very similar to the virtual method table in C++, where objects
carry pointers to tables of functions, known as methods.

But since MM 1 and MM 2 are separate, we need a way of
adding arbitrary functions of different types to D . The solution is,
essentially, an open method table.

module MM 1 where
type D = IOOpenDict

In MM 2, we create a witness witf for f , and define f to look up
the witness in its D argument’s method table. We don’t care if it
returns undefined if the witness isn’t there.

module MM 2 where
import MM 1
import 〈elsewhere〉(R)
witf :: IOWitness R ← newIOWitness
f :: D → R
f d = unJust (openDictLookup witf d)

For MM 3, we’re given a type T and a method function fT of type
T → R. Our constructT function creates a D with a single entry
in its method table, that is, ft t for key witf .

module MM 3 (constructT ,matchT ) where
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import MM 1
import MM 2
import 〈elsewhere〉(T , fT )
witT :: IOWitness T ← newIOWitness
constructT :: T → D
constructT t = openDictFromList

[MkAny witT t ,MkAny witf (fT t)]
matchT :: D → Maybe T
matchT d = openDictLookup witT d

Let’s check that f . constructT = fT :

LHS = f . constructT = λ t → f (constructT t)
= λ t → unJust (openDictLookup witf (

openDictFromList [MkAny witT t ,MkAny witf (fT t)]
))
= λ t → unJust (Just (fT t)) = fT = RHS

We also need to check that (constructT ,matchT ) is a virtual
constructor as defined in the previous section. The construction
constraint holds straightforwardly:

LHS = matchT . constructT
= λ t → matchT (constructT t)
= λ t → openDictLookup witT (openDictFromList

[MkAny witT t ,MkAny witf (fT t)]
)
= λ t → Just t = Just = RHS

The uniqueness constraint also holds, but only because we cleverly
hid witT inside MM 3. For matchT d to match, d :: D must
contain an entry for witT . But since witT is hidden, the only way
to create such a D is by using constructT .

LHS = fmap constructT (matchT d)

If d does not have a witT :

= fmap constructT (openDictLookup witT d)
= fmap constructT Nothing = Nothing = RHS

If d does have a witT , then we must have been created by
constructT . So there must be some t such that d = constructT t .

= fmap constructT (matchT (constructT t))
= fmap constructT (Just t))
= Just (constructT t) = Just d = RHS

4.5 COM-Style Interfaces
We can use open witness declarations to implement a style of OO
programming similar to Microsoft’s Component Object Model:

• there’s a single type that any object can be given
• objects can be defined to implement interfaces (set of functions)
• given such an object, one can query it to find out whether it

supports a given interface
• new interfaces can be defined

For a Haskell implementation, an interface might typically be a
datatype with a list of member functions. However, we will allow
any type to be an interface.

data IDrawable = MkIDrawable
iDrawableBoundsRect :: IORef (Int , Int , Int , Int),
iDrawableDraw :: Graphics → IO ()

Our strategy will be to declare a witness for each interface defini-
tion.

iDrawableWitness ::

IOWitness IDrawable ← newIOWitness

We want to present a corresponding queryInterface function to
query objects for interfaces. One difference from COM is that
our interface types are purely that: they provide no access to
any underlying object and so cannot be used as an argument to
queryInterface . Since our base object type is not an interface, we
call it Unknown instead of IUnknown . If we wanted to match
COM behaviour more closely, we could correspond the COM in-
terface “IWidget” to the Haskell type (IWidget ,Unknown), but
here we’ll leave that.

This is straightforward to implement: Unknown is simply
IOOpenDict :

type Unknown = IOOpenDict
queryInterface ::

IOWitness i → Unknown → Maybe i
queryInterface = openDictLookup

We shall also need a function to construct objects from interfaces:

newUnknown :: [Any IOWitness] → Unknown
newUnknown = openDictFromList

For example, consider a checkbox control for a user interface, for
which we want to provide three interfaces.

• IDrawable

• IClickable

• IBooleanState (checkbox is either checked or unchecked)

Those interfaces come with corresponding witnesses:

• iDrawableWitness

• iClickableWitness

• iBooleanStateWitness

We should already know how to implement the interfaces for our
object, and we can package them together into an Unknown using
newUnknown:

newCheckBox :: IO Unknown
newCheckBox = do

return $ newUnknown
[MkAny iDrawableWitness drawable,
MkAny iClickableWitness clickable,
MkAny iBooleanState booleanState]

4.6 Prototype-Based OO
Prototypes are an approach to object-oriented programming that
erases the boundary between classes and objects. Instead of classes,
any object can act as a prototype for creating similar objects. It’s a
very dynamic sort of typing, so we’ll have to do most everything in
the IO monad.

• A single clone operation replaces these operations from class-
based OO idioms:

creating a new instance (class→ object)

subtyping (class→ class)

cloning (object→ object).
• New fields and methods can be added to existing objects, which

can be looked up by name.
• New empty objects can be created.

For our implementation of prototypes in Haskell, we don’t distin-
guish fields and methods: they are both simply members, a method
being just a member that happens to have a function type. Members
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of objects are referred to by member name, and these are typed to
match the type of the member. Our objects are mutable dictionaries.

type PObject = IORef IOOpenDict

We use IOWitness values for member names, each declared with
a top-level call to newIOWitness . When applied to an object,
member names act as keys to a dictionary holding the state of the
object.

type PName = IOWitness

Since objects in prototype-based programming are mutable, re-
gardless of implementation our Haskell equivalents cannot be con-
structed, they can only by created within our execution monad. Cre-
ating new empty objects is straightforward, we simply create a ref-
erence containing an empty dictionary.

newPObject :: IO PObject
newPObject = newIORef emptyOpenDict

Likewise, cloning an object is no more than copying its state:

clonePObject :: PObject → IO PObject
clonePObject pobj = do

state ← readIORef pobj
newIORef state

Reading and writing member is also straightforward. lookupMember
looks up the name in the dictionary. readMember does the same
thing, but fails if the method is not found.

lookupMember ::
∀ a. PName a → PObject → IO (Maybe a)

lookupMember member object = do
dict ← readIORef object
return (openDictLookup member dict)

readMember ::
∀ a. PName a → PObject → IO a

readMember member object = do
ma ← lookupMember member object
case ma of

Just a → return a
Nothing → fail ”member not found”

Our writeMember function is also used to add new members to
objects.

writeMember ::
∀ a. PName a → a → PObject → IO ()

writeMember member val object = do
dict ← readIORef object
writeIORef (openDictAdd member val dict)

Invoking member functions must be done in the IO monad, since
members are mutable in objects, and we run the risk that the mem-
ber isn’t in the object. Member functions must generally include an
argument for the object itself, so that when an object is cloned, the
method is used with the new object rather than the old. To simplify
method invocation, we can create an idiom for methods, that their
types should have a particular form:

type PMethod a r = PObject → a → IO r

We provide a function to make invocation slightly simpler:

invoke :: ∀ a r . PName (PMethod a r) → PMethod a r
invoke name object args = do

m ← readMember name object
m object args

While the hierarchies of class-based idioms model strict IS-A re-
lationships, prototypes are good for more vague IS-LIKE-A rela-
tionships. For instance, an ellipse is like a rectangle. Here we first
create a prototype rectangle:

witbounds :: PName (Int , Int , Int , Int) ←
newIOWitness

witdraw :: PName (PMethod Drawing .Graphics ()) ←
newIOWitness

rectangleDraw :: PMethod Drawing .Graphics ()
rectangleDraw obj graphics = do

(left , top, right , bottom) ← readMember witbounds obj
Drawing .drawRect graphics left top right bottom

makeRectanglePrototype :: IO PObject
makeRectanglePrototype = do

rectangleProt ← newPObject
writeMember witbounds (0, 0, 100, 100) rectangleProt
writeMember witdraw rectangleDraw rectangleProt
return rectangleProt

Then we clone it and modify the clone to make a prototype ellipse.

ellipseDraw :: PMethod Drawing .Graphics ()
ellipseDraw obj graphics = do

(left , top, right , bottom) ← readMember witbounds obj
Drawing .drawEllipse graphics left top right bottom

makeEllipsePrototype :: PObject → IO PObject
makeEllipsePrototype rectangleProt = do

ellipseProt ← clonePObject rectanglePrototype
writeMember witdraw ellipseDraw ellipseProt
return ellipseProt

Finally we can use these prototypes to create instances (which are,
in fact, just clones):

makeShape ::
PObject → (Int , Int , Int , Int) → IO PObject

makeShape prototype bounds = do
shape ← clonePObject bounds
writeMember witbounds bounds shape
return shape

main = do
rectangleProt ← makeRectanglePrototype
ellipseProt ← makeEllipsePrototype rectangleProt
myCircle ← makeShape ellipseProt (50, 200, 30, 30)
myRectangle ←

makeShape rectangleProt (80, 200, 60, 30)
graphics ← Drawing .newWindow
invoke witdraw graphics myCircle
invoke witdraw graphics myRectangle
...

4.7 Thread-Local Storage
Peyton-Jones [10] suggests a language extension for thread-local
storage. It consists of a new top-level declaration, newkey, and
two functions, withBinding and lookupBinding .

newkey 〈identifier〉 :: Key 〈type〉
withBinding :: Key a → a → IO b → IO b
lookupBinding :: Key a → IO a

Our open witnesses extension cannot do thread-local storage by
itself, but by doing the Key work of dynamic typing, it can reduce
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the necessary API to a single function that gets a single thread-local
object, an IORef to an IOOpenDict .

lookupDict :: IO (IORef IOOpenDict)

This IORef is initialised at thread creation with an empty dictio-
nary:

newIORef emptyOpenDict

We can then implement the suggested thread-local extension. A
Key is simply an IOWitness .

type Key = IOWitness

And top-level newkey declarations become top-level IOWitness
declarations. Thus

newkey identifier :: Key type

becomes

identifier :: Key type ← newIOWitness

The lookupBinding function calls lookupDict to fetch the key:

lookupBinding key = do
dictref ← lookupDict
dict ← readIORef dictref
return (unJust (openDictLookup key dict))

The withBinding function executes a function with a new binding
added to the binding dictionary. It then restores the old dictionary
when it’s finished.

withBinding key a foo = do
dictref ← lookupDict
bracket

(do
dict ← readIORef
writeIORef dictref (openDictAdd key a dict)
return dict

)
(writeIORef dictref )
(const foo)

5. Related work
Several different approaches have been proposed to solve the ex-
pression problem in Haskell:

• Data.Typeable [1] is a popular solution to this problem, avail-
able in the standard libraries. But it is unsafe (section 4.2), and
therefore ugly: by writing an instance of the Typeable class, it’s
easy to write unsafeCoerce .

• Weirich [17] presents RepLib, a library for representing the in-
ternal structure of types. But that means breaking their encap-
sulation.

• Löh and Hinze [7] offer an extension to Haskell of open data
types and open functions. This is clean and intuitive to use,
powerful, and safe, but it involves a translation from their ex-
tended Haskell to existing Haskell that requires modules to be
compiled together.

• Seefried and Chakravarty [13] also offer an extension to Haskell
of open data types and open functions, that allows separate
compilation, but with a translation that is considerably more
complex.

• Swierstra [16] has a scheme where types can be easily con-
structed from a given list of variants. But new variants cannot
be added to existing monomorphic types.

6. Further work
6.1 Multiple Dispatch
In section 4.4, we showed how to do single dispatch, that is, create a
function on a single open type that can be defined for new variants.

The programming language Dylan allows multiple dispatch,
that is, functions that dispatch to particular methods based on the
type of more than one argument. This is also a notable feature of
the Haskell extension proposed by Löh and Hinze [7]. Can this be
done in Haskell with open witness declarations?

6.2 Top-Level Declarations
The mechanism we proposed to declare open witnesses at top level
is to call one particular IO function (newIOWitness) as a static
initialiser. This could be generalised to declare top-level MVars,
IORef s, and so on. Care needs to be taken, however, to prevent
observation of the order in which initialisers are executed.

On extending Haskell with static initialisers there has been ex-
tensive discussion on the Haskell mailing list since at least October
2004 [8], mostly in the context of global variables. Hey et al. [5]
summarise this on the HaskellWiki web site.
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